Technology Offer:

Simultaneous determination of anion and cation content in water samples through ICP-AES
Technology Offer:

Simultaneous determination of anion and cation content in water samples through ICP-AES

SUMMARY

A single system able to simultaneously provide information on the of anion and cation contents in water samples through ICP-AES has been developed in the polymers and nanomaterials research group of the University of Alicante. Companies interested in the commercial and technical development of the system are sought.

TECHNICAL DESCRIPTION

The determination of the content of anions and cations to obtain the ionic balance in water samples is currently requiring the use of several, time consuming and sometimes expensive techniques. The polymers and nanomaterials research group of the University of Alicante has developed a single and unique system providing simultaneously this kind of information.

The system has three vessels containing a first one for the sample (1, Figure 1), a second one for a silver nitrate solution (2, Figure 1) and a third one with a nitric acid diluted solution (3, Figure 1). Three PTFE capillaries (4-6, Figure 1) and two ‘t-uniions’ (8-9, Figure 1) are also employed. The setup also has a peristaltic pump (7, Figure 1), a capillary reactor (10, Figure 1), a filter (12, Figure 1), a valve (11, Figure 1) and a liquid – gas phase separation system (13, Figure 1) that is only employed to carry out the analysis of samples with a high content of organic matter.

SGITT-OTRI (University of Alicante)

Phone: +34965909959 Fax: +34965903803 E-mail: areaempresas@ua.es
The analysis procedure is carried out in the following steps:

a) **Mixing**: The peristaltic pump aspirates both sample and silver nitrate at a constant flow rate. Both streams mix together by means of a tee shaped union. Then, the resulting mixture combined with the nitric acid solution by using a second tee union.

b) **Reaction**: The final solution goes through a capillary reactor where chemical reactions take place.

c) **Separation**: A filter and/or a gas – phase separator was employed depending on the sample organic matter content. The mixture is forced to pass through a filter. For those samples having high dissolved organic compounds the gas – liquid phase separation system is employed.

d) **Measurement**: The mixture reaches the ICP-AES spectrometer where the emission intensity of each of the elements of interest is taken at characteristic wavelengths.
The present system is easy-to-automatize through the use of a robotized arm and a carrousel containing the samples. To achieve this an autosampler commonly employed to carry out ICP-AES routine analysis can be used.

The following table shows a comparison between the developed system and the conventional method:

<table>
<thead>
<tr>
<th></th>
<th>NEW SYSTEM</th>
<th>CONVENTIONAL METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample preparation</td>
<td>None</td>
<td>Filtering (1 min)</td>
</tr>
<tr>
<td>Calibration</td>
<td>Simultaneous (3 min per standard, 5 standards)</td>
<td>Metals (2 min per standard, 5 standards) Anions (tₐSulfate: 11 min per standard, 5 standards) Bicarbonate (HCl standardization, 30 min)</td>
</tr>
<tr>
<td>Sample analysis</td>
<td>Simultáneous (3 min)</td>
<td>Metals (2 min) Anions (tᵦSulfate: 11 min) Bicarbonate (20 min)</td>
</tr>
<tr>
<td>Total calibration time</td>
<td>15 min</td>
<td>95 min</td>
</tr>
<tr>
<td>Time for sample analysis</td>
<td>3 min</td>
<td>34 min</td>
</tr>
<tr>
<td>Sample throughput</td>
<td>155 samples day⁻¹</td>
<td>11 samples day⁻¹</td>
</tr>
</tbody>
</table>

ADVANTAGES

- Easy-to-atomate system.

- Only an instrument (ICP-AES) instead of three different methods (ICP-AES, acid-base titration and ion chromatography) is required to determine anions and cations.

- Analysis time is drastically shortened thus leading to an increase in the sample throughput.

- Not only water samples but also soils and blood samples, among others, can be analyzed.

SGITT-OTRI (University of Alicante)
Phone.: +34965909959 Fax: +34965903803 E-mail: areaempresas@ua.es
INNOVATIVE ASPECTS

The main innovation of the present system is the development of a single method allowing the sequential preparation and automatic quantification of ionic species in water samples employing a commercially available ICP-AES.

CURRENT STATE OF THE TECHNOLOGICAL INNOVATION

The system has been developed at the laboratory scale and it has been tested with conventional ICP-AES.

INTELECTUAL PROPERTY RIGHTS

The present system is patent protected

- Patent No: P201300170
- Date: 18/02/2013

APPLICATION FIELDS

- Analysis, management and water and waste treatment
- Chemical analysis
- Chemical industry

COLLABORATION SOUGHT

- Patent licensing for use, manufacturing and/or commercialisation.
- R&D Contract agreements (technical cooperation in order to adapt the developed technology to market needs or to other sectors).
- Commercial agreements.
- Subcontracting agreements
- Joint ventures / Spin Off possibilities.

SGITT-OTRI (University of Alicante)

Phone.: +34965909959 Fax: +34965903803 E-mail: areaempresas@ua.es
PROFILE OF THE RESEARCH GROUP

The analysis of polymers and nanomaterials research group is composed by 22 members and has the following research competencies:

- Sample preparation.
- Liquid sample introduction systems for ICP-AES e ICP-MS.
- HPLC-ICP/AES coupling.
- High Temperature Liquid Chromatography (HTLC).
- Fossil fuel and biofuel analysis.
- Food analysis.
- Water analysis.
- Speciation of organometallic compounds
- Foods disinfection

In the last 5 years, the research group has participated in more than 15 public research projects and more than 40 private projects, it has published more than 33 articles in peer reviewed international journals. It has participated in the edition of 10 books and in the development of a total of nine PhDs.

Besides the University technical facilities, the research group has the following relevant infrastructure:

- FT-IR Bruker, Vector-22
- Gas chromatograph: GC-2014 de Shimadzu
- HPLC with a ELSD detector: 300S ELSD de Softa Corporation
- UHPLC: LC-30AD Nexera and Nexera autosampler SIL-30AC both from Shimadzu
- Laser ablation system LSX-500 from CETAC
CONTACT DETAILS

Víctor Manuel Pérez Lozano
SGITT-OTRI (University of Alicante)
Phone: +34 96 590 9959
Fax: +34 96 590 3803
E-Mail: areaempresas@ua.es
URL: http://sgitt-otri.ua.es/es/empresa/ofertas-tecnologicas.html